Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
bioRxiv ; 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38464031

ABSTRACT

Viruses are an abundant and crucial component of the human microbiome, but accurately discovering them via metagenomics is still challenging. Currently, the available viral reference genomes poorly represent the diversity in microbiome samples, and expanding such a set of viral references is difficult. As a result, many viruses are still undetectable through metagenomics even when considering the power of de novo metagenomic assembly and binning, as viruses lack universal markers. Here, we describe a novel approach to catalog new viral members of the human gut microbiome and show how the resulting resource improves metagenomic analyses. We retrieved >3,000 viral-like particles (VLP) enriched metagenomic samples (viromes), evaluated the efficiency of the enrichment in each sample to leverage the viromes of highest purity, and applied multiple analysis steps involving assembly and comparison with hundreds of thousands of metagenome-assembled genomes to discover new viral genomes. We reported over 162,000 viral sequences passing quality control from thousands of gut metagenomes and viromes. The great majority of the retrieved viral sequences (~94.4%) were of unknown origin, most had a CRISPR spacer matching host bacteria, and four of them could be detected in >50% of a set of 18,756 gut metagenomes we surveyed. We included the obtained collection of sequences in a new MetaPhlAn 4.1 release, which can quantify reads within a metagenome matching the known and newly uncovered viral diversity. Additionally, we released the viral database for further virome and metagenomic studies of the human microbiome.

2.
Nat Med ; 30(3): 785-796, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38365950

ABSTRACT

Multiple clinical trials targeting the gut microbiome are being conducted to optimize treatment outcomes for immune checkpoint blockade (ICB). To improve the success of these interventions, understanding gut microbiome changes during ICB is urgently needed. Here through longitudinal microbiome profiling of 175 patients treated with ICB for advanced melanoma, we show that several microbial species-level genome bins (SGBs) and pathways exhibit distinct patterns from baseline in patients achieving progression-free survival (PFS) of 12 months or longer (PFS ≥12) versus patients with PFS shorter than 12 months (PFS <12). Out of 99 SGBs that could discriminate between these two groups, 20 were differentially abundant only at baseline, while 42 were differentially abundant only after treatment initiation. We identify five and four SGBs that had consistently higher abundances in patients with PFS ≥12 and <12 months, respectively. Constructing a log ratio of these SGBs, we find an association with overall survival. Finally, we find different microbial dynamics in different clinical contexts including the type of ICB regimen, development of immune-related adverse events and concomitant medication use. Insights into the longitudinal dynamics of the gut microbiome in association with host factors and treatment regimens will be critical for guiding rational microbiome-targeted therapies aimed at enhancing ICB efficacy.


Subject(s)
Gastrointestinal Microbiome , Melanoma , Microbiota , Humans , Gastrointestinal Microbiome/genetics , Melanoma/drug therapy , Immune Checkpoint Inhibitors/therapeutic use , Cognition
3.
Cell Rep ; 42(5): 112464, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37141097

ABSTRACT

Mouse models are key tools for investigating host-microbiome interactions. However, shotgun metagenomics can only profile a limited fraction of the mouse gut microbiome. Here, we employ a metagenomic profiling method, MetaPhlAn 4, which exploits a large catalog of metagenome-assembled genomes (including 22,718 metagenome-assembled genomes from mice) to improve the profiling of the mouse gut microbiome. We combine 622 samples from eight public datasets and an additional cohort of 97 mouse microbiomes, and we assess the potential of MetaPhlAn 4 to better identify diet-related changes in the host microbiome using a meta-analysis approach. We find multiple, strong, and reproducible diet-related microbial biomarkers, largely increasing those identifiable by other available methods relying only on reference information. The strongest drivers of the diet-induced changes are uncharacterized and previously undetected taxa, confirming the importance of adopting metagenomic methods integrating metagenomic assemblies for comprehensive profiling.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Mice , Microbiota/genetics , Metagenome , Diet , Metagenomics/methods
4.
Nat Biotechnol ; 41(11): 1633-1644, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36823356

ABSTRACT

Metagenomic assembly enables new organism discovery from microbial communities, but it can only capture few abundant organisms from most metagenomes. Here we present MetaPhlAn 4, which integrates information from metagenome assemblies and microbial isolate genomes for more comprehensive metagenomic taxonomic profiling. From a curated collection of 1.01 M prokaryotic reference and metagenome-assembled genomes, we define unique marker genes for 26,970 species-level genome bins, 4,992 of them taxonomically unidentified at the species level. MetaPhlAn 4 explains ~20% more reads in most international human gut microbiomes and >40% in less-characterized environments such as the rumen microbiome and proves more accurate than available alternatives on synthetic evaluations while also reliably quantifying organisms with no cultured isolates. Application of the method to >24,500 metagenomes highlights previously undetected species to be strong biomarkers for host conditions and lifestyles in human and mouse microbiomes and shows that even previously uncharacterized species can be genetically profiled at the resolution of single microbial strains.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Animals , Mice , Metagenome/genetics , Microbiota/genetics , Metagenomics/methods , Phylogeny
5.
Curr Opin Biotechnol ; 79: 102884, 2023 02.
Article in English | MEDLINE | ID: mdl-36623442

ABSTRACT

Statistical methods, especially machine learning, learning(ML), are pivotal for the analyses of large data generated by multiomics human gut microbiota study. These analyses lead to the discovery of microbe-disease associations. Furthermore, recent efforts for more data transparency and accessible analytical tools improved data availability and study reproducibility. Our recent accumulated knowledge on microbe-disease associations brings light to the next questions: what is the role of microbes in disease progression and how can we apply our knowledge of microbiome in clinical settings? Here, we introduce recent studies that implemented ML to answer the questions of causal inference and clinical translation.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Reproducibility of Results , Machine Learning
6.
Nature ; 614(7946): 125-135, 2023 02.
Article in English | MEDLINE | ID: mdl-36653448

ABSTRACT

The human microbiome is an integral component of the human body and a co-determinant of several health conditions1,2. However, the extent to which interpersonal relations shape the individual genetic makeup of the microbiome and its transmission within and across populations remains largely unknown3,4. Here, capitalizing on more than 9,700 human metagenomes and computational strain-level profiling, we detected extensive bacterial strain sharing across individuals (more than 10 million instances) with distinct mother-to-infant, intra-household and intra-population transmission patterns. Mother-to-infant gut microbiome transmission was considerable and stable during infancy (around 50% of the same strains among shared species (strain-sharing rate)) and remained detectable at older ages. By contrast, the transmission of the oral microbiome occurred largely horizontally and was enhanced by the duration of cohabitation. There was substantial strain sharing among cohabiting individuals, with 12% and 32% median strain-sharing rates for the gut and oral microbiomes, and time since cohabitation affected strain sharing more than age or genetics did. Bacterial strain sharing additionally recapitulated host population structures better than species-level profiles did. Finally, distinct taxa appeared as efficient spreaders across transmission modes and were associated with different predicted bacterial phenotypes linked with out-of-host survival capabilities. The extent of microorganism transmission that we describe underscores its relevance in human microbiome studies5, especially those on non-infectious, microbiome-associated diseases.


Subject(s)
Bacteria , Disease Transmission, Infectious , Gastrointestinal Microbiome , Home Environment , Microbiota , Mouth , Female , Humans , Infant , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Gastrointestinal Microbiome/genetics , Metagenome , Microbiota/genetics , Mothers , Mouth/microbiology , Infectious Disease Transmission, Vertical , Family Characteristics , Aging , Time Factors , Microbial Viability
7.
Nat Commun ; 13(1): 6474, 2022 10 29.
Article in English | MEDLINE | ID: mdl-36309502

ABSTRACT

The identification of the protospacer adjacent motif (PAM) sequences of Cas9 nucleases is crucial for their exploitation in genome editing. Here we develop a computational pipeline that was used to interrogate a massively expanded dataset of metagenome and virome assemblies for accurate and comprehensive PAM predictions. This procedure allows the identification and isolation of sequence-tailored Cas9 nucleases by using the target sequence as bait. As proof of concept, starting from the disease-causing mutation P23H in the RHO gene, we find, isolate and experimentally validate a Cas9 which uses the mutated sequence as PAM. Our PAM prediction pipeline will be instrumental to generate a Cas9 nuclease repertoire responding to any PAM requirement.


Subject(s)
CRISPR-Associated Protein 9 , CRISPR-Cas Systems , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/genetics , RNA, Guide, Kinetoplastida/genetics , Metagenome , Gene Editing/methods , Endonucleases/metabolism
8.
Nat Med ; 28(3): 535-544, 2022 03.
Article in English | MEDLINE | ID: mdl-35228751

ABSTRACT

The composition of the gut microbiome has been associated with clinical responses to immune checkpoint inhibitor (ICI) treatment, but there is limited consensus on the specific microbiome characteristics linked to the clinical benefits of ICIs. We performed shotgun metagenomic sequencing of stool samples collected before ICI initiation from five observational cohorts recruiting ICI-naive patients with advanced cutaneous melanoma (n = 165). Integrating the dataset with 147 metagenomic samples from previously published studies, we found that the gut microbiome has a relevant, but cohort-dependent, association with the response to ICIs. A machine learning analysis confirmed the link between the microbiome and overall response rates (ORRs) and progression-free survival (PFS) with ICIs but also revealed limited reproducibility of microbiome-based signatures across cohorts. Accordingly, a panel of species, including Bifidobacterium pseudocatenulatum, Roseburia spp. and Akkermansia muciniphila, associated with responders was identified, but no single species could be regarded as a fully consistent biomarker across studies. Overall, the role of the human gut microbiome in ICI response appears more complex than previously thought, extending beyond differing microbial species simply present or absent in responders and nonresponders. Future studies should adopt larger sample sizes and take into account the complex interplay of clinical factors with the gut microbiome over the treatment course.


Subject(s)
Gastrointestinal Microbiome , Melanoma , Skin Neoplasms , Gastrointestinal Microbiome/genetics , Humans , Immune Checkpoint Inhibitors/therapeutic use , Melanoma/drug therapy , Melanoma/genetics , Reproducibility of Results , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics
9.
Genome Biol ; 22(1): 209, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34261503

ABSTRACT

BACKGROUND: Akkermansia muciniphila is a human gut microbe with a key role in the physiology of the intestinal mucus layer and reported associations with decreased body mass and increased gut barrier function and health. Despite its biomedical relevance, the genomic diversity of A. muciniphila remains understudied and that of closely related species, except for A. glycaniphila, unexplored. RESULTS: We present a large-scale population genomics analysis of the Akkermansia genus using 188 isolate genomes and 2226 genomes assembled from 18,600 metagenomes from humans and other animals. While we do not detect A. glycaniphila, the Akkermansia strains in the human gut can be grouped into five distinct candidate species, including A. muciniphila, that show remarkable whole-genome divergence despite surprisingly similar 16S rRNA gene sequences. These candidate species are likely human-specific, as they are detected in mice and non-human primates almost exclusively when kept in captivity. In humans, Akkermansia candidate species display ecological co-exclusion, diversified functional capabilities, and distinct patterns of associations with host body mass. Analysis of CRISPR-Cas loci reveals new variants and spacers targeting newly discovered putative bacteriophages. Remarkably, we observe an increased relative abundance of Akkermansia when cognate predicted bacteriophages are present, suggesting ecological interactions. A. muciniphila further exhibits subspecies-level genetic stratification with associated functional differences such as a putative exo/lipopolysaccharide operon. CONCLUSIONS: We uncover a large phylogenetic and functional diversity of the Akkermansia genus in humans. This variability should be considered in the ongoing experimental and metagenomic efforts to characterize the health-associated properties of A. muciniphila and related bacteria.


Subject(s)
Gastrointestinal Microbiome/genetics , Genome, Bacterial , Metagenome , Phylogeny , Akkermansia/classification , Akkermansia/genetics , Akkermansia/metabolism , Akkermansia/virology , Animals , Bacteriophages/growth & development , Clustered Regularly Interspaced Short Palindromic Repeats , Genetic Variation , Humans , Mice , Operon , RNA, Ribosomal, 16S/genetics
10.
Elife ; 102021 05 04.
Article in English | MEDLINE | ID: mdl-33944776

ABSTRACT

Culture-independent analyses of microbial communities have progressed dramatically in the last decade, particularly due to advances in methods for biological profiling via shotgun metagenomics. Opportunities for improvement continue to accelerate, with greater access to multi-omics, microbial reference genomes, and strain-level diversity. To leverage these, we present bioBakery 3, a set of integrated, improved methods for taxonomic, strain-level, functional, and phylogenetic profiling of metagenomes newly developed to build on the largest set of reference sequences now available. Compared to current alternatives, MetaPhlAn 3 increases the accuracy of taxonomic profiling, and HUMAnN 3 improves that of functional potential and activity. These methods detected novel disease-microbiome links in applications to CRC (1262 metagenomes) and IBD (1635 metagenomes and 817 metatranscriptomes). Strain-level profiling of an additional 4077 metagenomes with StrainPhlAn 3 and PanPhlAn 3 unraveled the phylogenetic and functional structure of the common gut microbe Ruminococcus bromii, previously described by only 15 isolate genomes. With open-source implementations and cloud-deployable reproducible workflows, the bioBakery 3 platform can help researchers deepen the resolution, scale, and accuracy of multi-omic profiling for microbial community studies.


Subject(s)
Bacteria/classification , Bacteria/genetics , Computational Biology/methods , Metagenome , Microbiota/genetics , Microbiota/physiology , Phylogeny , Bacteria/metabolism , Humans , Metagenomics/methods , Research Personnel , Ruminococcus/classification , Ruminococcus/genetics , Workflow
11.
NPJ Biofilms Microbiomes ; 6(1): 47, 2020 10 30.
Article in English | MEDLINE | ID: mdl-33127901

ABSTRACT

Dental implants are installed in an increasing number of patients. Mucositis and peri-implantitis are common microbial-biofilm-associated diseases affecting the tissues that surround the dental implant and are a major medical and socioeconomic burden. By metagenomic sequencing of the plaque microbiome in different peri-implant health and disease conditions (113 samples from 72 individuals), we found microbial signatures for peri-implantitis and mucositis and defined the peri-implantitis-related complex (PiRC) composed by the 7 most discriminative bacteria. The peri-implantitis microbiome is site specific as contralateral healthy sites resembled more the microbiome of healthy implants, while mucositis was specifically enriched for Fusobacterium nucleatum acting as a keystone colonizer. Microbiome-based machine learning showed high diagnostic and prognostic power for peri-implant diseases and strain-level profiling identified a previously uncharacterized subspecies of F. nucleatum to be particularly associated with disease. Altogether, we associated the plaque microbiome with peri-implant diseases and identified microbial signatures of disease severity.


Subject(s)
Bacteria/classification , DNA, Bacterial/genetics , Metagenomics/methods , Peri-Implantitis/microbiology , Sequence Analysis, DNA/methods , Stomatitis/microbiology , Adult , Aged , Aged, 80 and over , Bacteria/genetics , Bacteria/isolation & purification , Case-Control Studies , Dental Implants/microbiology , Female , High-Throughput Nucleotide Sequencing , Humans , Machine Learning , Male , Middle Aged , Phylogeny
12.
Genome Biol ; 21(1): 138, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32513234

ABSTRACT

BACKGROUND: Eubacterium rectale is one of the most prevalent human gut bacteria, but its diversity and population genetics are not well understood because large-scale whole-genome investigations of this microbe have not been carried out. RESULTS: Here, we leverage metagenomic assembly followed by a reference-based binning strategy to screen over 6500 gut metagenomes spanning geography and lifestyle and reconstruct over 1300 E. rectale high-quality genomes from metagenomes. We extend previous results of biogeographic stratification, identifying a new subspecies predominantly found in African individuals and showing that closely related non-human primates do not harbor E. rectale. Comparison of pairwise genetic and geographic distances between subspecies suggests that isolation by distance and co-dispersal with human populations might have contributed to shaping the contemporary population structure of E. rectale. We confirm that a relatively recently diverged E. rectale subspecies specific to Europe consistently lacks motility operons and that it is immotile in vitro, probably due to ancestral genetic loss. The same subspecies exhibits expansion of its carbohydrate metabolism gene repertoire including the acquisition of a genomic island strongly enriched in glycosyltransferase genes involved in exopolysaccharide synthesis. CONCLUSIONS: Our study provides new insights into the population structure and ecology of E. rectale and shows that shotgun metagenomes can enable population genomics studies of microbiota members at a resolution and scale previously attainable only by extensive isolate sequencing.


Subject(s)
Eubacterium/genetics , Gastrointestinal Microbiome , Genome, Bacterial , Adolescent , Adult , Aged , Carbohydrate Metabolism/genetics , Child , Child, Preschool , Glycosyltransferases/genetics , Humans , Infant , Metagenome , Middle Aged , Phylogeography , Young Adult
13.
Nat Commun ; 11(1): 2500, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32427907

ABSTRACT

Microbial genomes are available at an ever-increasing pace, as cultivation and sequencing become cheaper and obtaining metagenome-assembled genomes (MAGs) becomes more effective. Phylogenetic placement methods to contextualize hundreds of thousands of genomes must thus be efficiently scalable and sensitive from closely related strains to divergent phyla. We present PhyloPhlAn 3.0, an accurate, rapid, and easy-to-use method for large-scale microbial genome characterization and phylogenetic analysis at multiple levels of resolution. PhyloPhlAn 3.0 can assign genomes from isolate sequencing or MAGs to species-level genome bins built from >230,000 publically available sequences. For individual clades of interest, it reconstructs strain-level phylogenies from among the closest species using clade-specific maximally informative markers. At the other extreme of resolution, it scales to large phylogenies comprising >17,000 microbial species. Examples including Staphylococcus aureus isolates, gut metagenomes, and meta-analyses demonstrate the ability of PhyloPhlAn 3.0 to support genomic and metagenomic analyses.


Subject(s)
Bacteria/genetics , Genome, Bacterial , Metagenomics/methods , Phylogeny , Bacteria/classification , Bacteria/isolation & purification , Genome, Microbial , Metagenome
14.
Genome Biol ; 21(1): 55, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32127018

ABSTRACT

BACKGROUND: While the physical and chemical properties of airborne particulate matter (PM) have been extensively studied, their associated microbiome remains largely unexplored. Here, we performed a longitudinal metagenomic survey of 106 samples of airborne PM2.5 and PM10 in Beijing over a period of 6 months in 2012 and 2013, including those from several historically severe smog events. RESULTS: We observed that the microbiome composition and functional potential were conserved between PM2.5 and PM10, although considerable temporal variations existed. Among the airborne microorganisms, Propionibacterium acnes, Escherichia coli, Acinetobacter lwoffii, Lactobacillus amylovorus, and Lactobacillus reuteri dominated, along with several viral species. We further identified an extensive repertoire of genes involved in antibiotic resistance and detoxification, including transporters, transpeptidases, and thioredoxins. Sample stratification based on Air Quality Index (AQI) demonstrated that many microbial species, including those associated with human, dog, and mouse feces, exhibit AQI-dependent incidence dynamics. The phylogenetic and functional diversity of air microbiome is comparable to those of soil and water environments, as its composition likely derives from a wide variety of sources. CONCLUSIONS: Airborne particulate matter accommodates rich and dynamic microbial communities, including a range of microbial elements that are associated with potential health consequences.


Subject(s)
Air Pollution , Metagenome , Microbiota , Smog , China , Cities , Environmental Monitoring/methods , Metagenomics/methods
15.
Genome Biol ; 20(1): 299, 2019 12 28.
Article in English | MEDLINE | ID: mdl-31883524

ABSTRACT

BACKGROUND: Humans have coevolved with microbial communities to establish a mutually advantageous relationship that is still poorly characterized and can provide a better understanding of the human microbiome. Comparative metagenomic analysis of human and non-human primate (NHP) microbiomes offers a promising approach to study this symbiosis. Very few microbial species have been characterized in NHP microbiomes due to their poor representation in the available cataloged microbial diversity, thus limiting the potential of such comparative approaches. RESULTS: We reconstruct over 1000 previously uncharacterized microbial species from 6 available NHP metagenomic cohorts, resulting in an increase of the mappable fraction of metagenomic reads by 600%. These novel species highlight that almost 90% of the microbial diversity associated with NHPs has been overlooked. Comparative analysis of this new catalog of taxa with the collection of over 150,000 genomes from human metagenomes points at a limited species-level overlap, with only 20% of microbial candidate species in NHPs also found in the human microbiome. This overlap occurs mainly between NHPs and non-Westernized human populations and NHPs living in captivity, suggesting that host lifestyle plays a role comparable to host speciation in shaping the primate intestinal microbiome. Several NHP-specific species are phylogenetically related to human-associated microbes, such as Elusimicrobia and Treponema, and could be the consequence of host-dependent evolutionary trajectories. CONCLUSIONS: The newly reconstructed species greatly expand the microbial diversity associated with NHPs, thus enabling better interrogation of the primate microbiome and empowering in-depth human and non-human comparative and co-diversification studies.


Subject(s)
Gastrointestinal Microbiome , Metagenome , Primates/microbiology , Animals , Humans , Phylogeny , Treponema/genetics
18.
Cell Host Microbe ; 26(5): 666-679.e7, 2019 11 13.
Article in English | MEDLINE | ID: mdl-31607556

ABSTRACT

Prevotella copri is a common human gut microbe that has been both positively and negatively associated with host health. In a cross-continent meta-analysis exploiting >6,500 metagenomes, we obtained >1,000 genomes and explored the genetic and population structure of P. copri. P. copri encompasses four distinct clades (>10% inter-clade genetic divergence) that we propose constitute the P. copri complex, and all clades were confirmed by isolate sequencing. These clades are nearly ubiquitous and co-present in non-Westernized populations. Genomic analysis showed substantial functional diversity in the complex with notable differences in carbohydrate metabolism, suggesting that multi-generational dietary modifications may be driving reduced prevalence in Westernized populations. Analysis of ancient metagenomes highlighted patterns of P. copri presence consistent with modern non-Westernized populations and a clade delineation time pre-dating human migratory waves out of Africa. These findings reveal that P. copri exhibits a high diversity that is underrepresented in Western-lifestyle populations.


Subject(s)
Fossils/microbiology , Gastrointestinal Microbiome/genetics , Genome, Bacterial/genetics , Prevotella/classification , Prevotella/genetics , Diet , Ethiopia , Feces/microbiology , Genetic Variation , Ghana , Humans , Prevotella/isolation & purification , Tanzania
19.
Nat Med ; 25(4): 667-678, 2019 04.
Article in English | MEDLINE | ID: mdl-30936548

ABSTRACT

Several studies have investigated links between the gut microbiome and colorectal cancer (CRC), but questions remain about the replicability of biomarkers across cohorts and populations. We performed a meta-analysis of five publicly available datasets and two new cohorts and validated the findings on two additional cohorts, considering in total 969 fecal metagenomes. Unlike microbiome shifts associated with gastrointestinal syndromes, the gut microbiome in CRC showed reproducibly higher richness than controls (P < 0.01), partially due to expansions of species typically derived from the oral cavity. Meta-analysis of the microbiome functional potential identified gluconeogenesis and the putrefaction and fermentation pathways as being associated with CRC, whereas the stachyose and starch degradation pathways were associated with controls. Predictive microbiome signatures for CRC trained on multiple datasets showed consistently high accuracy in datasets not considered for model training and independent validation cohorts (average area under the curve, 0.84). Pooled analysis of raw metagenomes showed that the choline trimethylamine-lyase gene was overabundant in CRC (P = 0.001), identifying a relationship between microbiome choline metabolism and CRC. The combined analysis of heterogeneous CRC cohorts thus identified reproducible microbiome biomarkers and accurate disease-predictive models that can form the basis for clinical prognostic tests and hypothesis-driven mechanistic studies.


Subject(s)
Choline/metabolism , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/microbiology , Metagenomics , Biomarkers, Tumor/metabolism , Cohort Studies , Colorectal Neoplasms/diagnosis , Databases, Genetic , Gastrointestinal Microbiome , Humans , Lyases/genetics , Lyases/metabolism , Species Specificity
20.
Cell ; 176(3): 649-662.e20, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30661755

ABSTRACT

The body-wide human microbiome plays a role in health, but its full diversity remains uncharacterized, particularly outside of the gut and in international populations. We leveraged 9,428 metagenomes to reconstruct 154,723 microbial genomes (45% of high quality) spanning body sites, ages, countries, and lifestyles. We recapitulated 4,930 species-level genome bins (SGBs), 77% without genomes in public repositories (unknown SGBs [uSGBs]). uSGBs are prevalent (in 93% of well-assembled samples), expand underrepresented phyla, and are enriched in non-Westernized populations (40% of the total SGBs). We annotated 2.85 M genes in SGBs, many associated with conditions including infant development (94,000) or Westernization (106,000). SGBs and uSGBs permit deeper microbiome analyses and increase the average mappability of metagenomic reads from 67.76% to 87.51% in the gut (median 94.26%) and 65.14% to 82.34% in the mouth. We thus identify thousands of microbial genomes from yet-to-be-named species, expand the pangenomes of human-associated microbes, and allow better exploitation of metagenomic technologies.


Subject(s)
Metagenome/genetics , Metagenomics/methods , Microbiota/genetics , Big Data , Genetic Variation/genetics , Geography , Humans , Life Style , Phylogeny , Sequence Analysis, DNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...